6 research outputs found

    A Model for Complex Subsidence Causality Interpretation Based on PS-InSAR Cross-Heading Orbits Analysis

    No full text
    Urban areas are subject to subsidence due to varying natural and anthropogenic causes. Often, subsidence is interpreted and correlated to a single causal factor; however, subsidence is usually more complex. In this study, we adopt a new model to distinguish different causes of subsidence in urban areas based on complexity. Ascending and descending Sentinel-1 data were analyzed using permanent scatterer interferometry (PS-InSAR) and decomposed to estimate vertical velocity. The estimated velocity is correlated to potential causes of subsidence, and modeled using different weights, to extract the model with the highest correlations among subsidence. The model was tested in Alexandria City, Egypt, based on three potential causes of subsidence: rock type, former lakes and lagoons dewatering (FLLD), and built-up load (BL). Results of experiments on the tested area reveal singular patterns of causal factors of subsidence distributed across the northeast, northwest, central south, and parts of the city center, reflecting the rock type of those areas. Dual causes of subsidence are found in the southwest and some parts of the southeast as a contribution of rock type and FLLD, whereas the most complex causes of subsidence are found in the southeast of the city, as the newly built-up areas interact with the rock type and FLLD to form a complex subsidence regime. Those areas also show the highest subsidence values among all other parts of the city. The accuracy of the final model was confirmed using linear regression analysis, with an R2 value of 0.88

    Towards a PS-InSAR Based Prediction Model for Building Collapse: Spatiotemporal Patterns of Vertical Surface Motion in Collapsed Building Areas—Case Study of Alexandria, Egypt

    No full text
    Buildings are vulnerable to collapse incidents. We adopt a workflow to detect unusual vertical surface motions before building collapses based on PS-InSAR time series analysis and spatiotemporal data mining techniques. Sentinel-1 ascending and descending data are integrated to decompose vertical deformation in the city of Alexandria, Egypt. Collapsed building data were collected from official sources, and overlayed on PS-InSAR vertical deformation results. Time series deformation residuals are used to create a space–time cube in the ArcGIS software environment and analyzed by emerging hot spot analysis to extract spatiotemporal patterns for vertical deformation around collapsed buildings. Our results show two spatiotemporal patterns of new cold spot or new hot spot before the incidents in 66 out of 68 collapsed buildings between May 2015 and December 2018. The method was validated in detail on four collapsed buildings between January and May 2019, proving the applicability of this workflow to create a temporal vulnerability map for building collapse monitoring. This study is a step forward to create a PS-InSAR based model for building collapse prediction in the city

    Coherence Change-Detection with Sentinel-1 for Natural and Anthropogenic Disaster Monitoring in Urban Areas

    No full text
    Rapid, reliable, and continuous information is an essential component in disaster monitoring and management. Remote sensing data could be a solution, but often cannot provide continuous data due to an absence of global coverage and weather and daylight dependency. To overcome these challenges, this study makes use of weather and day/light independent Sentinel-1 data with a global coverage to monitor localized effects of different types of disasters using the Coherence Change-Detection (CCD) technique. Coherence maps were generated from Synthetic Aperture Radar (SAR) images and used to classify areas of change and no change in six study areas. These sites are located in Syria, Puerto Rico, California, and Iran. The study areas were divided into street blocks, and the standard deviation was calculated for the coherence images for each street block over entire image stacks. The study areas were classified by land-use type to reveal the spatial variation in coherence loss after a disaster. While temporal decorrelation exhibits a general loss in coherence over time, disaster occurrence, however, indicates a significant loss in coherence after an event. The variations of each street block from the average coherence for the entire image stack, as measured by a high standard deviation after a particular disaster, is an indication of disaster induced building damage

    Evacuation Priority Method in Tsunami Hazard Based on DMSP/OLS Population Mapping in the Pearl River Estuary, China

    No full text
    Evacuation plans are critical in case of natural disaster to save people’s lives. The priority of population evacuation on coastal areas could be useful to reduce the death toll in case of tsunami hazard. In this study, the population density remote sensing mapping approach was developed using population records in 2013 and Defense Meteorological Satellite Program’s Operational Linescan System (DMSP/OLS) night-time light (NTL) image of the same year for defining the coastal densest resident areas in Pearl River Estuary (PRE), China. Two pixel-based saturation correction methods were evaluated for application of population density mapping to enhance DMSP/OLS NTL image. The Vegetation Adjusted NTL Urban Index (VANUI) correction method (R2 (original/corrected): 0.504, Std. error: 0.0069) was found to be the better-fit correction method of NTL image saturation for the study area compared to Human Settlement Index (HSI) correction method (R2 (original/corrected): 0.219, Std. error: 0.1676). The study also gained a better dynamic range of HSI correction (0~25 vs. 0.1~5.07) compared to the previous one [27]. The town-level’s population NTL simulation model is built (R2 = 0.43, N = 47) for the first time in PRE with mean relative error (MSE) of 32% (N = 24, town level), On the other side, the tsunami hazard map was produced based on numerical modeling of potential tsunami wave height and velocity, combining with the river net system, elevation, slope, and vegetation cover factors. Both results were combined to produce an evacuation map in PRE. The simulation of tsunami exposure on density of population showed that the highest evacuation priority was found to be in most of Zhuhai city area and the coastal area of Shenzhen City under wave height of nine meters, while lowest evacuation priority was defined in Panyu and Nansha Districts of Guangzhou City, eastern and western parts of Zhongshan City, and northeast and northwest parts of Dongguan City. The method of tsunami risk simulation and the result of mapped tsunami exposure are of significance for direction to tsunami disaster-risk reduction or evacuation traffic arrangement in PRE or other coastal areas in the world

    Seasonal movements of Bronze Age transhumant pastoralists in western Xinjiang

    Get PDF
    The paper explores seasonal movements of Bronze Age mobile pastoralists in the western Tianshan mountainous region of Xinjiang, China. Fieldwork by a team from the Institute of Archaeology of the Chinese Academy of Social Science (CASS) and the University of Sydney, Australia have identified cyclical land use practices associated with the Andronovo cultural complex. Their pattern of seasonal movements has been reconstructed through ethnographic studies and analysis of modern snow and grass cover. Using this detailed combination of data, the study defines requirements for seasonal pastures–winter, summer and spring/autumn–and shows a clear correlation between modern land use and seasonal patterns of movement in the Bronze Age
    corecore